:: Cálculo del Esqueleto en la Proyección de Mercator ::

Fecha de Publicación: 03/06/2007

Autor del Artículo:

José Millán Gamboa.

José Millán Gamboa es Oficial de la Armada, Ingeniero Hidrógrafo. Ha impartido clases en los últimos años en la Escuela de Hidrografía de la Armada en el Instituto Hidrográfico de la Marina, en las asignaturas de Geodesia y Topografía, Fotogrametría Aérea, Cartografía Náutica, Carta Electrónica y Derecho Marítimo.
Además, José Millán es autor de varias obras de referencia en castellano en materia de cartografía. Tiene su propia editorial (JM Ediciones: http://www.jmediciones.com) y su último libro "Fundamentos para Cartografía Naútica" puede ser comprado a través de la red con envío al extranjero en este enlace.
José Millán puede ser contactado en josmil@wanadoo.es

 1. EL ESQUELETO EN LA PROYECCIÓN DE MERCATOR

El problema del cálculo del esqueleto consiste en la determinación de las dimensiones de una carta Mercatoriana y la distribución de los paralelos y meridianos que forman el reticulado geográfico de esa carta. Para resolver este problema se emplearán las fórmulas de correspondencia estudiadas para este tipo de transformación. Al final del artículo se adjunta una hoja de cálculo Excel™ con la implementación de las fórmulas vistas en el mismo.

Los datos de partida para su resolución son los marcos N y S de la carta, definidos por sus respectivas latitudes, los marcos E y W, definidos por sus respectivas longitudes, la latitud del paralelo de referencia, la escala, el intervalo entre meridianos, y el intervalo entre paralelos, normalmente dado en minutos.

Las incógnitas son las dimensiones vertical y horizontal de la carta, las distancias desde el marco S a cada paralelo, y las distancias desde el marco W a cada meridiano.

El marco SW será el que se tome como origen de coordenadas para definir las distancias x a cada meridiano, y las distancias y a cada paralelo. Este origen de coordenadas, será sobre el que se den los resultados, pero para llegar a ello, antes se utilizará el sistema de coordenadas rectangulares, más general, cuyo origen coincidirá con aquel punto del Ecuador que se encuentra en el meridiano de Greenwich, es decir, el punto de latitud 0º, y longitud 0º. Para conformar el reticulado geográfico se emplearán unidades exactas de grados, minutos o segundos, excepto en el caso de los marcos que serán elegidos según criterios cartográficos.

Las fórmulas de correspondencia permiten calcular las coordenadas (x, y) de un punto P’ sobre el plano de representación, correspondiente a un punto P(j, l) sobre el elipsoide:


Para más información véase el artículo sobre el cálculo de coordenadas en Mercator

Como en esas fórmulas el valor del semieje mayor a se introduce en metros, resultará que las coordenadas (x, y) obtenidas, también vendrán dadas en metros, y medidas desde el origen de coordenadas O’ (x=0, y=0) del plano, que se corresponde con el punto O de coordenadas (j=0, l=0) sobre el elipsoide.

Para calcular los elementos del esqueleto, se tomará como nuevo origen de coordenadas su esquina SW, es decir el punto de coordenadas (xSW, ySW) sobre el plano, o su correspondiente (jSW, lSW) sobre el elipsoide. Tal como se muestra en la figura anterior, para convertir las coordenadas de cualquier punto x, y a coordenadas esqueleto xe, ye con origen en las esquina SW del marco, se deberán calcular las diferencias:

Los valores xe e ye, así calculados, vendrán dados en metros medidos sobre el terreno, ya que no se ha tenido en cuenta ninguna escala de representación para la futura carta hasta el momento. Así, para una escala de representación E = 1:M, habrá que multiplicar todos los valores a por E. Además, los resultados de cualquier pareja de coordenadas (xe, ye), para confeccionar la carta, suelen darse en milímetros respecto al origen SW, por lo que también habrá que multiplicar por el factor 103.

Teniendo en cuenta estas consideraciones, se pueden dar unas expresiones que dan las coordenadas xe e ye de cualquier punto del esqueleto, respecto a su origen SW, con escala y en milímetros:

Ahora bien, hasta ahora se ha considerado como cilindro de proyección, aquel que es tangente al elipsoide a lo largo del Ecuador. Pero si se utiliza el artificio del paralelo de referencia en una latitud j0, se producirá una reducción de escala respecto del modelo original con el cilindro tangente en el Ecuador. Dicha reducción, viene dada por la relación:

Por tanto, las coordenadas xe e ye, de cualquier punto del esqueleto respecto a su origen SW, con escala, en milímetros, referidos a un paralelo de referencia j0, e introduciendo latitudes y longitudes en minutos, vendrán dadas por:

En estas fórmulas interviene el siguiente factor, que se denominará iu, y que corresponde a la longitud de 1 minuto de paralelo de referencia j0, con escala y en milímetros:


Por tanto, las fórmulas anteriores, expresadas en función del valor de la longitud de 1’ de paralelo de referencia iu, quedarán de la forma:

          

 2. CÁLCULO DE LAS DIMENSIONES DE LA CARTA

Con lo estudiado hasta ahora, es posible calcular las dimensiones, horizontal y vertical, del esqueleto o marco de la carta sin más que calcular la diferencia entre las abcisas de los marcos E y W, considerando las esquinas SE y SW para la horizontal, y la diferencia entre las ordenadas de los marcos N y S, considerando las esquinas NW y SW para la vertical:

 Ejemplo:

Calcular las dimensiones horizontal y vertical de un esqueleto cuyos marcos son: Marco N = 35º 19’ N, Marco S = 35º 10’ N, Marco W = 03º 24’ W y Marco E = 03º 10’ W; la escala de la carta será de 1:20.000, y el paralelo de referencia el de 35º 14’ 30” N. El elipsoide empleado como referencia será el Internacional con a = 6.378.388 m y f = 1/297.

Como primer paso se determinará el valor de la excentricidad e y e2:

y por tanto

A continuación, se determinará el valor de la longitud de 1’ del arco de paralelo de referencia, con la fórmula ya estudiada anteriormente:

Para el cálculo de la dimensión horizontal del esqueleto se empleará la expresión correspondiente:

Para el cálculo de la dimensión vertical será necesario calcular primero las latitudes aumentadas FN y FS correspondientes a las latitudes jN y jS de los marcos N y S. Para ello, se empleará la segunda igualdad de las expresiones analíticas de la proyección Mercator (la que hace referencia al cálculo de las y; para más información véase el artículo sobre el cálculo de coordenadas en Mercator), a la que se le añade el factor 10.800/p para dar F en minutos:

Del cálculo anterior se puede deducir la diferencia, en minutos, entre las latitudes aumentadas del marco Norte y del marco Sur, con lo cual ya se puede aplicar la fórmula correspondiente para el cálculo de la dimensión vertical:

De los valores de las dimensiones horizontal y vertical, se deduce que la carta del ejemplo es horizontal.

 3. CÁLCULO DE LA DISTRIBUCIÓN DE MERIDIANOS Y PARALELOS

Para este cálculo, será necesario disponer previamente del dato de intervalo Dmp, entre meridianos y paralelos, dado normalmente en minutos, y que generalmente será el mismo para ambos tipos de línea. Para el primer meridiano o paralelo, contados a partir de la esquina SW del esqueleto, se elegirá una cifra en longitud y latitud que de números enteros. Como se puede dar el caso de que la latitud o longitud de los marcos del esqueleto no sean números enteros, la distancia entre los marcos del esqueleto y la primera línea de meridiano o paralelo, puede ser distinta a la que determina el intervalo que establece el resto de la distribución de líneas. Cuando se llegue al borde contrario del marco de la carta, tanto en longitud como en latitud, es decir, a la esquina NE, podrá volver a ocurrir lo mismo.

Previo al cálculo de la distribución de líneas, se habrá efectuado el de la determinación de las dimensiones de la carta, por lo que la longitud iu será un dato conocido y calculado con la expresión correspondiente que ya hemos visto antes. Este valor iu multiplicará al intervalo Dmp, en minutos, elegido para representar las líneas. Este intervalo es constante para establecer la separación entre meridianos, excepto para el caso mencionado de que los marcos no sean cifras enteras. Una vez elegida la cifra entera correspondiente al primer meridiano, y calculada su distancia al origen, bastará con ir sumando a ella el producto iu×Dmp para determinar la posición de cada meridiano de acuerdo al intervalo Dmp elegido.

Sin embargo, para el caso de los paralelos, será necesario calcular una a una, las latitudes aumentadas F, correspondientes a cada uno de los paralelos definidos de acuerdo al intervalo elegido. Para ello, se empleará la segunda igualdad de las expresiones analíticas de la proyección Mercator (que también hemos citado antes), a la que como hemos dicho se le añade el factor 10.800/p para dar las latitudes aumentadas buscadas en minutos. Entonces, se calcularán las diferencias existentes, en minutos, entre las latitudes aumentadas F correspondientes a cada paralelo y la latitud aumentada FSW del marco S. Una vez obtenidas todas las diferencias, se multiplicarán, cada una de ellas, por el valor iu. El resultado será la distancia vertical, en milímetros, que separa cada paralelo del origen SW.

 Ejemplo:

Siguiendo con el mismo caso que en el ejemplo para la determinación de las dimensiones de la carta, se pide determinar la distribución de líneas si el intervalo entre ellas es de Dmp = 1’.

En este caso, los marcos E y W del esqueleto, son cifras enteras de minutos, por lo que se sumará, directamente a los marcos, el producto:

Así, considerando como origen de coordenadas la esquina SW, se empezará sumando, a la longitud del Marco W = 03º 24’W, la cantidad de 75,8525 mm para determinar los meridianos cada Dmp = 1’, hasta llegar al Marco E = 03º 10’ W. De esta forma se obtendrán los datos del siguiente cuadro, en el que se puede observar que la última distancia es igual a la dimensión horizontal calculada para el esqueleto:

DISTRIBUCIÓN DE MERIDIANOS

Paralelo de referencia
φo= 35 º 14’ 30"

Longitud 1’ arco paralelo referencia a escala
iu =75,8525 mm

Meridiano

λ

Meridiano minutos

 λ’

Diferencia con λSW

(λ - λ SW)

Distancia al origen SW

xe (mm)=iu× (λ - λ SW)

03º 24’ W

204

00

0000,0000

03º 23’ W

203

01

0075,8525

03º 22’ W

202

02

0151,7050

03º 21’ W

201

03

0227,5575

03º 20’ W

200

04

0303,4100

03º 19’ W

199

05

0379,2625

03º 18’ W

198

06

0455,1150

03º 17’ W

197

07

0530,9675

03º 16’ W

196

08

0606,8200

03º 15’ W

195

09

0682,6725

03º 14’ W

194

10

0758,5250

03º 13’ W

193

11

0834,3775

03º 12’ W

192

12

0910,2300

03º 11’ W

191

13

0986,0825

03º 10’ W

190

14

1061,9350

Para determinar la distribución de los paralelos, se necesita calcular primero, las latitudes aumentadas para cada una de las latitudes que establecen los intervalos. Para ello, volvemos a utilizar la segunda igualdad de las expresiones analíticas de la proyección Mercator, a la que como hemos dicho se le añade el factor 10.800/p para dar las latitudes aumentadas en minutos. Las latitudes aumentadas FN y FS, de los marcos N y S, ya se han hallado al calcular las dimensiones del esqueleto, así que se continuará calculando la latitud aumentada del siguiente paralelo, el 35º 11’ N, y posteriormente, las siguientes con el intervalo Dmp = 1’ hasta llegar al Marco N = 35º 19’ N. Así, se obtiene:

Aplicando sucesivamente, se llegará a obtener la siguiente tabla en la que se puede observar que la última distancia es igual a la dimensión vertical calculada para el esqueleto, con lo cual completamos el ejercicio:

DISTRIBUCIÓN DE PARALELOS

Paralelo de referencia
φo= 35 º 14’ 30"

Longitud 1’ arco paralelo referencia a escala
iu =75,8525 mm

Paralelo

φ

Latitud aumentada

F

Diferencia con FSW

(F -FSW)

Distancia al origen SW

ye (mm)=iu× (F -FSW)

35 º  10’ N

2243,18630

00,00000

0000,0000

35 º  11’ N

2244,40419

01,21789

0092,3800

35 º  12’ N

2245,62234

02,43604

0184,7797

35 º  13’ N

2246,84073

03,65443

0277,1976

35 º  14’ N

2248,05937

04,87307

0369,6345

35 º  15’ N

2249,27827

06,09197

0462,0911

35 º  16’ N

2250,49743

07,31113

0554,5674

35 º  17’ N

2251,71683

08,53053

0647,0620

35 º  18’ N

2252,93649

09,75019

0739,5762

35 º  19’ N

2254,15640

10,97010

0832,1095

Descarga una hoja de cálculo Excel™ para ver las fórmulas del artículo en acción.

Autor del Artículo:

José Millán Gamboa.

José Millán Gamboa es Oficial de la Armada, Ingeniero Hidrógrafo. Ha impartido clases en los últimos años en la Escuela de Hidrografía de la Armada en el Instituto Hidrográfico de la Marina, en las asignaturas de Geodesia y Topografía, Fotogrametría Aérea, Cartografía Náutica, Carta Electrónica y Derecho Marítimo.
Además, José Millán es autor de varias obras de referencia en castellano en materia de cartografía. Tiene su propia editorial (JM Ediciones: http://www.jmediciones.com) y su último libro "Fundamentos para Cartografía Naútica" puede ser comprado a través de la red con envío al extranjero en este enlace.
José Millán puede ser contactado en josmil@wanadoo.es



¿Esta información te ha sido útil?
Ayúdanos a mantener la página con una donación:



© GabrielOrtiz.com